Teaching Smart Cities: From Urban Policy to Urban Innovation

by Jennifer Clark, Center for Urban Innovation

4_april_1
A Sample Smart City from IDC Government Insights (2013), courtesy Smart Cities Council

The topic of smart cities — as a discourse and as a practice — came on the popular scene first with initiatives such as IBM Smarter Cities in the early 2010s and has since captured a much wider audience. Like many technology projects, smart cities have caught the public imagination as something novel. Self-driving cars are presented as “disrupting” transportation models and the built environment itself. And yet, self-driving cars are still just individual cars. They drive on the same streets that have defined the urban form for more than a century. They may influence the demand for parking but it is less clear what effect they will have on roads. If anything, such technology appears to be incremental, not disruptive. And, when policy expertise enters the conversation, we see the clear evidence of this obvious incrementalism.  

The growing interest in smart cities has presented some interesting questions to the academic community: Where does one learn about smart cities? Who teaches smart cities? What discipline or degree programs prepare students to design, implement, and evaluate smart cities?

“Smart cities” is rarely seen for what it is — a technology diffusion challenge operating in a dynamic and contested space between the public and the private sector.  The technology development will likely prove to be the easy part; it is the design and deployment of these models into this liminal space where governance, regulation, access, participation, and representation are all unclear and the “operating standards” are yet to be fully articulated that will prove to be the real challenge.

Smart cities present a very interesting challenge to teaching and to curriculum development in universities. This is a technology-intensive field which is fundamentally interdisciplinary and necessarily rooted in the social sciences. What makes cities are people — the choices they make, the places they go, the things they buy, and where they live and work. The built environment shapes those choices and urban systems facilitate or aggravate both movement across and living in cities. But at their core, cities are complex political, economic, and social systems. So, the challenge of smart cities is not one of technology alone. Indeed, most of the relevant technologies exist and currently operate in other contexts like manufacturing and defense. The question then becomes — beyond a grasp of the underlying technologies — what does one need to know to be a smart cities expert?

What are the prerequisites for studying smart cities? Does it require a background in data analytics? Civic computing? Civil engineering? Or, does the mastery of smart cities require knowledge of cities themselves? Stated another way, could you effectively study biotechnology without mastering organic chemistry or biology? Could you study astrophysics without an understanding of physics and mathematics?  

I began teaching university-level courses about how to study cities in 2004 at Cornell University. The first course I taught was an introduction to urban fieldwork tailored to undergraduate urban studies students. The course was intended to prepare students for careers that required understanding the actors and processes that shape the urban environment.  

Since then, I have taught many other courses on urban policy and urban and regional economic development at Georgia Tech. I have also coordinated a graduate concentration of the MSPP degree in public policy specializing in urban policy and anchored by a two semester course sequence PUBP 6604: Urban Policy Analysis and Practice and PUBP 6606: Urban Development Policy. And, in my experience, every year these courses change at the margins if not in their core content. These courses change because cities themselves are dynamic — what cities do and why and how changes over time and thus, so does the study of them. After teaching these courses for more than a decade, I see them now through the lens of the evolution of the field itself from urban policy to urban innovation.

The evolving nature of both the discipline and the practice has been highlighted to me through my evolving use of the two core books I have taught for several years in Urban Policy Analysis and Practice: 1) Basic Methods of Policy Analysis and Planning (a book I co-authored with colleagues in policy and planning disciplines), and 2) Fast Policy (a book co-authored by colleagues from urban and economic geography). Both books emphasize the speed at which policy analysis and policy diffusion occur and the role of institutions and analysts in speeding along policy change — and their corresponding responsibilities in slowing it down — to be more deliberate, assess alternatives, and make informed determinations about what works and what doesn’t and for whom. In other words, the need for urban innovation experts to understand efficiency, equity, distribution, and impact in addition to technology. Fundamentally, smart cities are about being smart, not just being high-tech.

In February 2016, the President’s Council of Advisors on Science and Technology (PCAST) released a major report “Technology and the Future of Cities.” The report outlined a strategy to guide federal investment and engagement in smart cities initiatives. Although the future of these initiatives and the impact of the original PCAST report in influencing investment is uncertain, the report itself revealed some interesting absences. Only a small number of the more than 100 contributors to the Future of Cities Report represented the perspective or expertise of the social sciences focused on cities and the urban scale: urban policy, urban planning, urban geography, urban history, urban economics, or urban administration.  

Historically, the array of social science fields focused on cities are sub-fields of much larger disciplines — economics, political science, geography, history. After decades of deindustrialization and disinvestment in cities, these sub-fields are not always the most popular or publicized. However, urban planning — to varying degrees — is the exception to the sub-field rule. Within urban planning, the consensus opinion has long been that urban planning is a discipline of its own. Its disciplinary boundaries run parallel to architecture in that there is a core curriculum, a professional master’s degree, professional certifications, and a clear professional practice. One is trained as an urban planner to work in urban planning. In other words, urban planning has rarely identified as an interdisciplinary project.  

As a consequence, “smart cities” as a domain, has emerged into the world of degrees and disciplines in which its home is likely to be fluid rather than fixed. Teaching smart cities will likely be a collaborative and interdisciplinary project with its core knowledge claims rooted in an understanding about the workings of cities and its novel value claims oriented around its interdisciplinarity and its integration of knowledge about not just technology but how technology can be used in the urban context.

For me and the curriculum I teach, the promise of urban innovation is exciting. I look forward to teaching urban policy as the landscape changes and smart cities becomes a centerpiece of investment and administration. Cities have never stood still. There is no reason why the curriculum about them should either.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s